Vorking Paper o, CO
A Parametric Programming Solution To Tae
Vector Maximum Problem, With Applications
To Decisions Under Uncertainty

by

Arthur M, Geoffrion

U NS
APR 141965

_n-(\‘:{r_’;{l U AN
DDCIRA E

Western Management Science Institute
University of California ® Los Angeles

ARGy 1 Gy



University of California
Los Angeles

Western Management Science Institute

February, 195

Working Paper No, 68
A Parametric Programming Solution To The
Vector Maximum Problem, With Applications
To Decisions Under Uncertainty
by

Arthur M, Geoffrion



ACKNOWLEDGMENTS

The author is pleased to express his sincere appre-
ciation to Professor Harvey M. Wagner, under whose expert
guidance this research was carried out. Thanks are also
due to L. Breiman, R. H. Hayes, and J. B. Rosen for
helpful comments. Mrs. Sheila Hill has my gratitude for
her fine typing of this paper.

This work was supported partially by the Office of
Naval Research under Task NR O47-04l, Contract Nonr 233(75),
the National Science Foundation under grants GS-552 and
24064, and by the Western Management Science Institute
under a grant from the Ford Foundation. The author is
grateful to the above agencies for their generous support,
and to the Stanford Computation Center for providing the

necessary computational facilities.

iv



ABSTRACT

This work begins with a study of individual decision-making
under uncertainty, a problem which we formulate as

(1) Maximize f(x,B) subject to 31(5’9) 20, i=1, ... , m,
X

where x 1is a decision n-vector, P 1is a b-vector of exogenous
variables and parameters of the decision model, f 1is an objective
function to be maximized, and the 8, ~Te constraint functions
which determine the set of feasible decisions. The source of uncer-
tainty is B, which is known only to lie in a given set B. We
also consider the case in which a probability distribution over B
is given.

Several methods for circumventing uncertainty in the constraints
are briefly reviewed, and several decision criteria for circumventing
uncertainty in the objective function are discussed. Particular
attention is devoted to the demonstration of certain relationships
between these criteric:. It is concluded that vector max.mum reformu-
lations of (1) play a prominent role in dealing with uncertainty in
such decision problenms.

A vector maximum problem is of the form

"Maximize" fl(f)’ cee fr(i)
X

(2) =
subject to gi(f-) 20, i=1, ... ,m.

The quotation marks signify that it is desired to find all efficient




decisions, i.e., all decision vectors satisfying the constraints
such that it is impossible to achieve an increase in any one objective
function without violating the constraints or decreasing at least
one of the other objective functions. In Chapter II we discuss two
methods for transforming a vector maximum problem into an equivalent
parametric programming problem. Existing computational methods for
the latter problems are briefly surveyed.

The principal contribution of this work is presented in Chapter III:
a class of algorithms for solving parametric concave programming

problems of the form

Maximize afl(ﬁ) + (l’a)fg(f)
(3) =
subject to gi(_:g') >0, i=1, ... , m

for each fixed value of a 1in the closed interval (0,1], where

£, (i = 1,2) are strictly concave functions, g (1 =1,...,m)

are concave functions, and certain additional regularity assumptions
are made. Under these assumptions it is shown that (2) (with r = 2)
and (?) are equivalent in the sense that 50 is efficient in (2)

if and only if Eo solves (3) for some value of a in the unit
interval. The present class of algorithms is not "simplex-like"

or "gradient" in nature, but proceeds by maintaining a solution of
the Kuhn-Tucker Conditions as @ varies by small increments (under
our assumptions these conditions are necessary and sufficient for

an optimal solution of (3)). The main algorithm given herein displays
quadratic convergence at each increment of a. A simple modification

for handling linear equality constraints is indicated.
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Problem (3) also subsumes the standard (non-parametric) concave
programming problem when a feasible solution is known. Thus the
present algorithms provide a deformation method of concave programming.
Since many of the results of this chapter hold for much more general
parametric problems than (3), moreover, the present algorithms are
pertinent to sensitivity analysis applications.

The final chapter presents a numerical example which illustrates
the solution of a decision problem under uncertainty by means of the

techniques discussed in the preceding chapters.

vii



TABLE OF CONTENTS

Ac KNOWI‘EDMN‘IS . . . . . . L] L] . . . . . . . . . L] . [ . . (]

ABSTRACT- [ [ . . . [ . L] . . . . . . . . . . L] * . . . . . . .

NOTATION. . L] . L] * L] . . L . L [ . . . . . . . L] L] . L) . . L]

CHAPTER

I On the Relevance of the Vector Maximum Problem to .
Decision-Making Under Uncertainty . . . . . . . . . .

1. Introduction. . « « v ¢ ¢« ¢ ¢ ¢ ¢ ¢ 0 e 4w e e .

2. Treating Uncertainty in the Feasibility Constraints

3. Treating Uncertainty in the Objective Function. . .

3.1 Reformulations Not Involving Probabilities

3.2 Reformulations Involving Probabilities . .

3 L] 3 Arl Exmple . . L) L] L] [ ] L] . . * . . [ [ [ . .

3.4 Vector Maximum Reformulations. . . . . . .

II Reducing a Vector Maximum Froblem to a Parametfic
Programming Problem . . . . v ¢« v ¢« « ¢ ¢ ¢ o 0 o

1. Reducing (1) to a Problem Parametric in the

Constraints . . &« ¢ v ¢ ¢ v 6 s 6 e 0 e e e e e

2. Reducing (1) to a Problem Parametric in the
Objective Function. . . . . . « + « ¢« « + o . .

3. (Computational Methods for Parametric Problems .

IITI A Class of Algorithms for Parametric Concave Programming.

1. Introduction and Preliminaries. . . .

1.1 Motivationof (R) . « « « v v v v v v o .+ .

1.2 Theoretical Foundation . . . « . « « « + .« .

viii

Page

iv

xi

k3

Ly

L6
49
25
b
5k
56




IV

APPENDIX

A.

B.

2.

A Basic Conceptual Algorithm. . . . . . . . . .

2.1 Assumptions. . « + ¢ ¢ o o o s 0 e 0 0.

2.2 Statement of the Basic Conceptual Algorithm.

2.3 Theoretical Development. . . . . . . . .

A Basic Computational Algorithm . . . . . . . .
3.1 Newton's Method. . . . « ¢« v ¢+ v v « o« v &
3.2 The Basic Computational Algorithm. . . . .

mrther study or step 5 L] L] . L] L] . L] L] » . . *

4.1 Preliminary Remarks on Determining the Order

Trials at Stepl P o . B o« @ 515 o ol b b b

4,2 Sharpening Corollary 2.1 . « « « + « « « &

4.3 Modification of Step 3--Determining the Order

Ol TRI-lEe 5 B E e B b e e s
Some Extensions . . . . ¢ o 0 0 v 000w e .
5.1 Linear Equality Constraints. . . . . . . .

5.2 More General Parametric Problems . . . . .

An Tllustrative Example . . « « « ¢ ¢« ¢ ¢ o ¢ o & o

1.

2.

A Decision Problem Under Uncertainty. . . . . .

Circumventing Uncertainty by a Vector Maximum
Reformulation . « + « v &« ¢ ¢ ¢ ¢ ¢ o ¢ o ¢ o @

An Equivalent [arametric Programming Reformulation. .

Solving the Parametric Problem. . . . . . . . .

Some Properties of Convex Sets and Concave Functions.

Graphical Examples. « + + « « ¢ o « o o o s o o o o o

ix

Page
63
63
66
68
82
82
88

95

100

104
107
107
108
109
109

110
111

112

118

120




Page
C. Computational Devices . . + « ¢« ¢« ¢« ¢ o ¢« ¢ v ¢« o s « o « .+ 129
1. Newton' B MethOd L . L L] . L] . . . L] . L] [ . . . . L] . 129

2., Convenient Partitions of the Inverse Matrix
Required by Newton's Method . . . . . . . . . . . . . 132

3, A Refinement Method for Approximate Matrix Inverses . 134
4, Formulae for d(ES(a), _qs(a))/da. S &

BI mem L] [ ] L) L] L) L] L] . L] A . L] L] . . L] L] L] . . L] . L] . [ * L] 136



Notation

(xl,...,xn) is a decision vector in E" (n-dimensional Euclidean

I
L]

space), and is under the control of the decision.maker

; (Bl,...,ab) is an uncertain vector in Eb representing exogenous

o)
!

variables and model parameters, and is not under the control

of the decision-maker

f(£92) is & real-valued criterion function which is to be maximized;
if there is no dependence on B, we write f£({x); if there

are several criterion functions, we write f(x) for

(£,(x),...,f (x))

g(x,p) = (gl(f’é)""’gm(f’g)) is a real vector-valued constraint

function; if there is no dependence on B, we write g(x;

{(z € 2: 2z has property P} cenotes the set c¢f all elements z
in the set Z which have property P; when Z is omitted,

it is implicitly understood to be the pertinent universal

set

X 1is a subset of En consisting of the feasible decisions; often

X represents ({x: 5(&)29]

B (in Chapter I) is a subset of Eb which is known to contain the

"true realization" of 2]

x> (>} 0 signifies X, 2 (>0 (i=1,...,n)
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vy

X >0 signifies x >0 but x #0
4 denotes a probability distribution over B

C C(C) D signifies that the set C is a (proper) subset of D

o, & = 0,2 1/2 o]
N (x") = ¢x: Y (x,-x <rl} , an open neighborhood of i«
r'= & i i i -
of radius r

F(a) denotes the maximum a-fractile cr. terion (see problem (4.5)

of Chapter I)
A(M) denotes the aspiration criterion with aspiration level M
(see problem (4.6) of Chapter I)

[a,b) £ (t ¢ B a <t <b)

(Pa) denotes the parametric programming problem considered in
Chapter III; the parameter @ may vary in this notation
(there is no relation between this usage of a and that

of Chapter I)

£(x;0) £ af,(x) + (1-a)f,(x)

fo(f)

np>

3t (x) 3 (x)

yr ey

, the gradient of f(x)
Xy axn -

S denotes a subset of constraint indices; S_C_M, where M is

the set of the first m positive integers

u = (ul,...,um) denotes the dual variables associated with the

Kuhn-Tucker conditions

xii



(KT-1),...,(KT-4) are, collectively, one version of the Kuhn-

Tucker conditions associatel with (Pa)

(=S)a is a more complete notation for the equations (KT-1) and

(KT-2); S and @ may vary in this notation

(x*(a), u*(a)) 1is the optimal solution and dual variables of (Pa)

as functions of «
(§S(a), Es(a)) is a solution of (=S)a as a function of «
K?if(z) denotes the matrix of second partial derivatives (i.e., the

hessian) of f(i)

> + x° means that the (infinite) sequence 51,52,...,§v,...

o
converges to x
C-D denotes the points in the set C which are not in the set D

A= (ie M u;(a) > 0}, the set of active constraints at a; «

may vary in this notation

m £ (i € M: gi(i*(a)) = 0)j, the set of binding constraints at

x*(@); a may vary in this notation

a'(j = 1,...,N) are the points of change of Ax or of Bx 1in the

unit interval; Q@' 1is a generic term for a point of change
a'+ 1is an arbitrary point strictly between two points of change

Tor 2 (a'-Z, a'+Z], where £ 1is defined immediately above Theorem k.2,

Chapter III
xiii




CHAPTER I
On the Relevance of the Vector Maximum

Problem to Decision-Making Under Uncertainty

1. Introduction

This chapter addresses a problem of individual decision-making
under uncertainty of the form

(1) Maximize f(x,8) subject to g(x,p) 20,
X

where x = (x x ) is the decision vector, B - (Bl,...,ﬁ ) is

12000 %p b
a vector of exogenous variables and parameters of the model, f 1is

the objective (or criterion or payoff) function to be maximized,

and g = (gl,...,gm) is a vector-valued constraint function which
determines the set of feasible decisions. We assume that the functions
f and g are known, but that B 1is known only to lie in a given

set B g; Eb, where Eb is b-dimensional Euclidean space. O0ften

we snall make the additional assumption that P may be regarded as

a random variable with a known probability distribution over B.

A choice of x must be made before B is found out, 1f, indeed,

it ever is revealed to the decision-maker. Throughout this chapter,

no experimentation is permitted in order to reduce uncertainty about

B.

If P were known exactly, then (1) would be a well-defined

problem (providing that the desired maximum exists, of course).

But we have assumed that B is uncertain, and so (1) is not well-defined.




There are two distinct aspects of the difficulties arising from
uncertainty in B: the set of feasible decisions is uncertain, and
the objective function is uncertain. Maximization cannot .be performed
until the constraints and objective function are reformulated so as

to be independent of PB. We shall discuss a variety of such reformu-
lations, and it will be seen that quite frequently vector maximum

reformulations play a prominent role.

The Vector Maximum Problem

A vector maximum problem arises whenever there is more than one
objective function to be extremized. Consider the problem

(2) "Maximize" f(x) ,
xeX

where f(x)= (fl(z),...,fr(zc_)) is a vector-valued objective function
(each component of f represents an objective, usually non-additive
with the others, which the decision-maker wants to maximize), and

XC E" 1is a set of feasible decisions. In the fortunate event that
each component of the objective function reaches its maximum simul-
taneously, as in Figure 1, then (2) is said to have a perfect solution.
In general, however, an improvement of one objective beyond a certain
point can only te obtained at the expense of worsening another.

Suppose that for a feasible decision 50 there exists no other feasible

decision 51 such that}/ 2(51) 2'2(50). Then 50 is termed an

l77111 this work we adopt the convention that x > O signifies
X, 20 (iel,...,n), x>0 signifies x; 20 (i =1,...,n) and

x; >0 for at least one i, and x >0 signifies x, >0 (i=1,...,n).



]

efficient solutiong/ of (2). The quotation marks in (2) signify

that it is desired to find all efficient solutions. When they are
all found, the vector maximum problem (2) has been solved.

When f has only two or three components, we envision determining
the entire set of efficient solutions and presenting the corresponding
outcomes in graphical form to the decision-maker, who would then
subjectively determine a trade-off between conflicting objectives
and thus make the final selection of a decision. Figures 1 and 2
illustrate the graph of attainable outcomes for two hypothetical cases
involving two objective functions. The efficient outcomes are denoted

by the heavy line and dot.

A A

attainable _|

outcomes hﬁhﬁ“wh

;?(x) ilﬁf]

— (x) » 0 (x)

Figure 1 Figure 2

In many applied decision problems, even in the absence of uncer-
tainty, there are several objective functions which naturally present

themselves to the decision-maker. In such situations, the relevance

2/

=’ The notion of an efficient solution is essentially the same as
the notion of "undominated" or "admissible" decisions in decision
theory, and the notion of "Pareto optimality" in game theory (see
Luce and Raiffa, 1957, p. 287 and p. 118).



of the vector maximum problen is obvious, and need not be emphasized
further. What we do wish to emphasize is that in the presence of
uncertainty even a single-criterion-tunction problem such as (1),
which we would accept as the "correct" formulation if P were known

exactly, tends to explode into vector maximum reformulations when

one attempts to turn it into a well-defined problem.

Plan of Discussion

Because uncertainty in the constraints is fundamentally different
from uncertainty in the objective function of (1), we split our dis-
cussion into two parts: 1in section 2 we consider ways of reformulating
the constraints so as to be independent of B, and in section 5 we
consider ways of reformulating the objective function so as to be
independent of B (this is usually known as invoking a decision
criterion). These two steps must be accomplished in order to convert
(1) into a well-defined problem. The conversion usually can be
accompliched in several ways, reflecting various compromises which
may be made to uncertainty in B, realism in the final model, and
computational considerations.

In section 2, three reformulations of the constraints will be
discussed: permanent feasibility, the penalty function reformulation,
and probabilistic constraints. The first two do not require a proba-
bility distribution over B, while the last does. The last two
reformulations sometimes lead to a vector maximum problem.

In s2ction 3 we consider several decision criteria, and some

relations between them are noted. We suggest that a given decision




problem should be attacked by several decision criteria rather than
by only one. The result is, of course, a vector maximum problem. Two
examples are presented which demonstrate tne usefulness of considering
two criteria simultaneously. The second example is a one-period
inventory model, and an argument is given for deviating from the

now classical solution.

2. Treating "Incertainty in the Feasibility Constraints

This section is essentially a review of some of the existing
ways of circumventing uncertainty in the constraints, and is included
mainly for completeness. Mixtures and variations of these basic

approaches can be improvised to cover most particular applications.

The Permanent Feasibility Reformulation

To be absolutely sure of choosing a feasible decision, choice
must be limited to those vaiues of x which are feasible for all
B € B. That is, restrict attention to the sebé/ m (x: g(x,p) >0}
(see Madansky, 1962 and 1963). Be¥

An obvious difficulty with this reformulation is that when B

is "large," the permanently feasible set is apt to be "small," :.i even

may be empty. When the maximization operation is performed . ° ;eguently,

there may be little opportunity to achieve a satisfactorily righ value

of the objective function.

2/ We adopt the notation of using braces to denote sets in this work.
The symbol @ denotes the empty set.



The Penalty Function Reformulation

The above reformulation does not admit the possibility of ever
choosing a decision which is infeasible. What does it mean to say that
a decision x' 1is "infeasible" when, say, P' obtains? Mathematically,
we have g(x',B') z 0, which means that either (x',B') is physically
impossible, or is physically possible but "undesirable" (we are dis-
tinguishing between those constraints which are dictated by the physical
limitations of the system and those which are imposed at the model-
maker's discretion). 1In the second case, it may be possible to take
additional action in order to make the outcome less "undesirable,"
or at least to pay a price for being "infeasible." Denote this "price"
by 2(5',9'), not necessarily measured in dollars. Note that p is,
in general, a vector-valued function, reflecting the fact that vio-
lations of different constraints may imply different dimensions of
disutility. For example, consider an investment portfolio optimization
model which has as its objective the maximization of portfolio worth
at the end of a specified horizon. One constraint may specify a desired
level of diversification (e.g., a maximum of 30% of the portfolio in
defense industries), and another constraint may specify a lower bound
on the average Standard and Poor's quality rating of the securities.
Violation of each of these constraints would be measured in different
units from the unit of measurement of the objective function.

The penalty function reformulation of (1) results, in general,
in a vector maximum problem of the form

(3) "Maximize" f(x,B), -p(x,B) .
X




An important special case arises when p has but one component,
and this component is additive with f. This reformulation then
becomesg/

(3.1) Maximize ([f(x,8) - p(x,B)] .
X

All of the two-stage "stochastic programming" problems (see, e.g.,
Dantzig, 1955, Madansky, 1962, and Mangasarian and Rosen, 1964) can
be thought of as penalty function reformulations. The basic idea of
these problems is to aj pend a second stage to the original problem

to "correct for" possible infeasibility of the original decision; p
then represents the minimum cost of correcting for an infeasible x,
as alfected by the then known actual value of PB. The usual example
of a situation in which the two-period formulation may be appropriate
is the case of a manufacturer who is committed to produce to satisfy
an unknown demand P for his perishable products. If all of the
demand 1s not satisfied, then he purchases the difference on the open

market.

Probabilistic Constraints

Assume that P may be regarded as a random variable, and that

its probability distribution over B 1is known.

L

L7 Note that (1) can be written equivalently in this form if p 1is
taken to be arbitrarily large for infeasible combinations of x and
B, and equal to zero for feasible combinations. For example,

Maximi Inf |[f ’ 5
&X)I(MIZG [2;9[ (x) +§: uigi(z g)1]



The notion of permunent f'easibility may be relaxed if one requires
merely that each or all of the constraints must hold with at least

some prescribed probability. For example, consider

Maximize f(x,B)
X

subject to Prob[gi(_)g,_B_) >0]> a, , AN RS TS

where 0<a, <1 (i=1,...,m). Charnes and Cooper (1959, 1963)

3

refer to this as 'chance-constrained" programming. Note that when
each a, is nearly one, this reformulation approaches the permanent
feasibility reformulation.

Another probabilistic constraint reformulation is

Maximize f(x,B)
X

subject to E[g(x,p)] >0,

where "E" denotes expectation.

As en alternative to the formulations above, one may incorporate

some or all of the probabilistic constraints in the objective function,

e.g.,

"Maximize" f(x,B) , Prob[gl(_)g,g) > 0]
X

subject to Prob[gi(_)s,g) >0]>a U > S RS

i )

The efficient solutions to the resulting vector maximum problem show
clearly the available trade-offs between the original objective function

and assurance that various of the constraints will be met.




P Treating Uncertainty in the Objective Function

In section 2 we discussed several ways of reformulating the
constraints so as to be independent of g. Here we assume that this
has been accomplished, and discuss several ways of reformulating the
objective functions so as to be independent of B. For the sake of
simplicity of discussion, we shall treat the case of but a single
objective function, so that the problem to be considered in this section
can be rewritten as

(4) Maximize f(x,B)
xe X

As before, B 1is known to lie in a given set B, and X 1is the
set of feasible decisions.

Since it is necessary to choose a decision X Dbefore ;g is
revealed (if it is ever revealed), f(x,B) must be replaced by a
inown function of x alone. That is, (4) must be reformulated as

(4.0) Maximize ?(x)
X € X -

~nJ
where ? is a known function to be chosen. The choice of f in a

given situation is equivalent to what is customarily known as the choice

of a decision criterion. 1If a decision is an optimal solution of

(4.0), it is said to satisfy the decision criterion which produces ??5)
from f(x,B).

After first discussing two alternative restatements of (4), we
shall briefly summarize the admissibility criterion, the maxmin payoff

criterion, the estimate criterion, and the Principle of Insufficient



Reason., The difficulty of finding a single ideal decicion criterion
is well-known, and so we take the position that it may be more useful
to select twc ciiteria, each with distinet merits of its own, and
recast (4) as a vector maximum problem (each component ot the vector-
valued objective function is derived from one decision criterion).

An example is presented to illustrate the possible advantages of such
a procedure.

We then shall assume that a probability dist.ibution over B 1is
given. The concept of stochastic admissitility is introduced as a
generalization of the ordinary concept of admissibtility. Next we
examine three decision criteria for reducing (4) to a well-defined
problem with heavy emphasis on a geometric motivaticn for each irn
order to gain insight and understanding. These are the maximum
expected payoff criterion, the maximum q-fractile criterion (maximize
the a-fractile of the distribution of f(f,g) under the probhabilicy
distribution of B, for some preselected a), and an aspiration
criterion (maximize the probability nf achieving at least some pre-
scribed level of payoff). Several propositions are proved which
relate these criteria to each other and to the previously mentioned
criteria which do not involve probauilities. Finally, a one-period
invertory example is presented to illustrate the ideas orf this section
and to support the suggestion that several criteria, rather than a
cingle one, should be selected to embody the conflicting aims of the
decision-maker. The resulting vector maximum problem should then be

solved in place of (4).

10
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Alternative Problem Stalements

In some situations the objective function of (4) can be written
as f(x,B) = Fl(f) + F2(§,§). If F, and F, each represent a
quantity which the decision-maker wants to maximize, one may reformu-
late (4) as a two-component ve:tor maximum problem

"Maximize" F (x), F (X,B) ’
1N oNED =
x € X

s0 as to quarantine the part depending on B. The advantage of this
formulation is that the decision-maker gzins a clearer understanding
of how his objectives are influenced by uncertainty. As an example,
let F, represent the immediate payoff of a multistage decision

1

problem, and let F, represent the present worth of the future payoffs,

2
where B represents the future values of exogenous variables.
Another restatement of (4) is obtained by using regret in place

of payoff. Assume that [ Max f(x,B)] is achieved for each p e B.
x e X

The regret due to making decision x and then observing B is defined
to be

r(f:é) = [ Mex f(_)j,E)] = f(f;é) .
xeX

Stating problems in terms of regret rather than payoff has the advantage
of highlighting the consequences of uncertainty in B dramatically.

In addition, gret may have more tractable mathematical properties
than payoff (assuming that the indicated maximization operation is

not overly difficult), due to non-negativity and sometimes symmetry.

11



When B is known exactly, maximizing payoff is, of course,

exuctly equivulent to minimiving regret. When g is uncertain,
however, and various criteria ure applied in order to arrive at u
decision, it is welleknown that different decisions often result
depeniing on whether puayoff or regret ic used.

In this work the discussion will be carried on primarily in

terms of payoff, but with the obvious modifications each criterion

can be applied to regret as well.

3.1 FRetformulations not Invclving Probabilities

We shall briefly review a few classical decision criteria which
do not involve probabilities. An example is given to illustrate that
it can be more useful to consider several criteria simultaneously

rather than to search for a single ideal criterion.

Admissibility Criterion

Consider (4). A decision x' is said to be admissible (with
respect to X and B) if x' € X and if there exists no other
decision x" € X such that f(x",8) > f(x',B) for all B € B, with
strict inequality holding for some value of P ¢ B. If such a decision
x" did exist, it would be said to dominate x! (one may also define

weak dominance by dropping the proviso that strict inequality must

hold for some value of E). The admissibility criterion requires
that one choose an admissible decision. 1In other words, if a(§)
is defined to be equal to 0 if x 1is admissible and equal to -1

if x 1is inadmissible, (4) is reformulated as:

(4.1) Maximize a(x) .
BE 1€

212



The difficuliies with ihis criterion are twofold: the cet of
admissible decisions may be onerous to determine computationally, and

this set may be quite a large subset of X.

Maxmin Payoff Criterion

A conservative decision-maker might invoke the maxmin payoff
criterion, which yields

(4.2) Maximize [ Inf f(x,B)] .
xeX BeB

The correcsponding criterion in terms of regret is known, of course,

as the minmax regret criterion.

Estimate Criterion

The estimate criterion requires that one pick a value for B,

A A 5/
say B, and then act as though B were the true value of B.=
That is, solve

(4.3) Maximize f(ﬁ,ﬁ)
xeX

A
Since P may be chosen to be any point in B, we see that we

really have a whole family of criteria.

z/ This criterion is included in order to formalize the common practice
of using Judgmental or engineering approximations to costs and other
parameters of decision models. The notion of an estimate is related

to the idea of a certainty equivalent, which will be discussed at the
end of subsection 3.2. It should be noted that this criterion may

also be invoked when B 1is regarded as a random variable, and in

fact, the expected value of B is a popular estimate.

13



The computationud atvantapges . Llis approach tre obvious. It

is not o obvious that there exists a "rood" cotimate in 3, or

how to i onc.

The Principle of Insufficient Reason

Assume that B consists of a finite number (k) of elements,
each denoted by gi. Then the Principle of Insufficient Reason asserts

that one chould replace (4) by

(b, L) Maximize
X € X i=1

-
M~
)
P
1=
-
I™
p

Comparison of Criteria

The above decision criteria are representative of the methods
which have been proposed in an effort to circumvent uncertainty in
the objective function in the absence of probabilities. The diffi-
culties of selecting one criterion which satisfies all of a compre-
hensive set of intuitively appealing desiderata for "rational"
decision-making are well-known (see, e.g., Luce and Raiffa, 1957,
Chapter 13), and suggest the futility of seeking an ideal criterion.
One possible way out of this dilemma is to consider several criteria
at once, and thus to reformulate (4) as a vector maximum problem.
The actual choice of a decision would be made on an ad hoc basis
from the set of efficient solutions.

Table 1 defines a decision problem in which there are four
possible values of B, and five possible decisions. The entries
L)

give the values of f(fl,g and the consequences of each possible

decision in terms of average payoff (on which the Principle of

14



Decision

AVERAGE PAYOFF

50 2@ )
59,0
LO pb—
10
30 |— 5 ©
20 b—
10 b—o
0 I R B
10 20 30 40
MINIMUM PAYOFF
Figure 3
Value of B
. 5 3 L AVG MIN
B~ g B B PAYOFF PAYOFF
15 Lo 53 20 52 15
10 60 50 8¢ 50 10
20 Lo L5 91 L9 20
60 58 30 uh L8 %0
ol S Pl D a1 51
TABLE 1

15




Insutficient Renson 1o tor1) and in terms of minimum payoff (on
which the maxmin payot'f’ eriterion is based). Figure % grraphs these
consequences.

All decisions are admissible. The Principle of Incufficient
Reason would lead to the choice of decision number two, while the
maxmin payoff criterion leads to the fifth decision. However, it
ceems reuaconable to favor the fourth decision over any of the others
because it comes very close to satisfying both of the above criteria.

We csubmit that by judicious choice of two criteria the resulting
vector maximum reformulation of (h) can be expected to lead to a more

satisfactory decision than a single criterion.

5.2 Reformulations Involving Probabilities

With the additional assumption that B may be regarded as a
random variable, one may choose to regard (4) as a continuous game
in norma. form. This viewpoint, and the consequent game-theoretic
solutions, will not be considered here. Instead it will be assumed
that B has a known probability distribution u over B and so
(L) may be regarded as a game against a neutral "Nature." That is,
we are in what is sometimes known as a situation of individual decision-
making under 'risk."

The principal tenet of utility theory (an excellent summary is
given in Luce and Raiffa, 1957, Chapter 2) is that for a "rational"

decision-maker there exists a utility transformation of f, which

we denote by u(f), such that the most preferred decision is an

16



optimal solution of':

Maximize E(u(t(x,B))] .
X € X

If one accepts any of the sets of axioms of rational behavior leuding

to this result, then the maximum expected utility criterion is Justified

provided that the required utility transformation is at hand.
Unfortunately it may be very tedious actually to determine wu(f).

For this reason fand also because of certain reservations which we

have with regard to the axioms of utility theory), we shall consider

other criteria which can be applied directly to f(x,B) without the

need for a utility transformation. We begin by introducing a natural

analog of the admissibility criterion.

Stochastic Admissibility Criterion

For fixed X, u induces a probability distribution on f which
may be plotted in cumulative form as in Figure 4 (each curve represents
the cumulative distribution function of f corresponding t- different
values of x). Loosely speaking, one wishes to pertorm (4) by choosing
an X which determines a c.d.f. that is uniformly as low (or, equiva-
lently, as far to the right) as possible. 1In Figure 4 it is clear that

the c.d.f. determined by X, must be strictly preferred to that of

2

X1 while X5 need not be preferred to 53. Cbgserve that although

the probability density functions determined by x. and x, overlap,
il =

2
the c.d.f.'s do not.

We formalize the above ideas in terms of the concept of stochastic

. o o . ; . .
iqominance. A decision x is said to stochastically dominate x'

L7



¢~ o1~

[x > (dX)3]q0a

(X > (§%)3)20xd

0°T
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if  Prob[ r(x°,B) < k] < Prob[£(x',) < k] ror all reul &k, with
strict inequality holding for at least one value of Kk (it we drop
the proviso that strict inequality must hold for at least one value

of k, then we use the term weak slochactic dominance). If a feasible

decision is not stochastically dominated by any other feasible decision,

it is said to be stochastically admissible.é/ The stochastic admissi-

bility criterion requires that one choose a stochastically admissible

decision (this criterion can be written in a form similar to (4.1)).

Remark: Although we do not choose to do so in this paper, it is possible
to strengthen the stochastic admissibility criterion somewhat
by permitting randomized decisions over X. COne would say
that the feasible decision x' 1s stochastically inadmissible
under a randomized decision strategy if there exists a proba-
bility distribution N on X not involving 5' such that
Probu,)\[f(i,g) <k]< Prob“[f(f,g) < k] for all k, with
strict inequality holding for at least one value of k. For
example, in Figure &4, X3 is stochastically dominated by
the randomized strategy which chooses X5 and X, each with
a probability of one-half, even though neither x, nor X,
stochastically dominate Xx, alone. Randomized decision

rules have the effect of taking vertically convex combina-

tions of the c.d.f.'s. It is clear that the set of

e/

=’ Since stochastic admissibility is defined in terms of X and the
particular distribution u, to be precise we should qualify stochastic
admissibility as heing "with respect to X and u." We omit this
qualification for the sake of brevity, since no confusion is likely to
result in our discussion.
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stochusticully admissible decisions allowing randomized
stratepgiec is contained in the set of stochastically admissible

decisions allowing only pure strategies.

We now explore the relationship between ordinary and stochastic

admissibility,

Proposition 1:

Let u vanish outside of B. If io weakly dominates x',

then 50 weakly stochastically dominates x'.

Proof: We must show that for all real k, Prob[f(x’,p) < k]
< Prob[f(f',g) < k]. By the definition of (non-stochastic) weak
dominance, we have f(x',B) < f(io,g) for all B ¢ B. Thus for any
fixed value of k, f(ﬁo,g) <k implies f(x',B) <k, and so for

each k we have
BeB: £(x°8) <k)C(BeB: £(x,8) <k).
The proposition follows.

Remark: To see that the converse of this proposition need not hold,

consider the following example. X [xo,xl}, B = (61,62},

£(x°,8Y) = £(x},8%) = 1, r(x%69) = £(x1,8Y) = 2,

Prob[B = Bl] = .2 5 Prob(p = B2] = .8. Then x° stochasti-

cally dominates xl, put x° does not weakly dominate xl.

With additional hypotheses, one may strengthen Proposition 1.

20



Proposition 2:

Let f(x,B) be continuous on B for cach x ¢ ¥, ani let

M be positivez/ everywhere on and vanich outside of B. If

x° dominates x', then ﬁo stochastically dominates x'.

Proof: From Proposition 1 we have that 50 weakly ctochasti-
cally dominates x'. It remains to show that Prob[f(zo,g) < k*] <
Prob[f(x',B) < k*] for some k*. Since 50 dominates x', there
exists P* ¢ B such that f(zo,g*) > f(x',f*). Put k¥ =
l/2(f(§°,§*) + f(x',p*)). By the continuity of f there is a neigh-
borhood N¢ of B* such that f(x°,B) > k* > f(x',p) for all
B e N* () B, and so by the positivity of u on B we have
Prob[ £(x°,8) > k* > £(x',p)] > 0. This fact, with the definition

of Eo’ yields
Prob[ £(x',8) < k*] = Prob[£(x',B) < k* < £(x°,)] +
Prob[ £(x",8) < k* > £(x°,p) ]
= Prob[£(x',B) < k* < £(x°,8) ] + Prob[£(x°,B) < k]

> Prov[ £(x°,B) < k*] .

Z/ A probability distribution is said to be positive everywhere on

B if for each 60 ¢ B then for every (b-dimensional) neighborhood

No of Eo the event [Nofw B] has & non-zero probability. A neigh-

b
borhood of Bo of radius p 1is defined as zg;\/:: (B?-Bi)2 < p} .
i=1

and is denoted by Np(go) when a complete notation is desired.
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Proposition 2 shows that, under the given assumptions, the set
of stochastically admissible decisions is contained in the set of
admissible decisions, as one would exj-ct and hope. To see that the
set of stochastically admissitle decisions can be considerably smaller

than the set of admissible decisions, consider the example

Meximize [10 - (B - x)2] ’

X € Rl

where pu 1is the Normal distribution with mean E and variance 02,

and B Rl. Viewing the objective function as a family of functions
of B 1indexed by x, this family is seen to consist of concave
parabolas which are identical except for the axis of symmetry, which

occurs at B = x. Clearly every x° € Rl is admissible, for

f(xo,ﬁ = x°) 10 > f(x,B = x°) for all x # x°. It is also clear

that x' # B 1is stochastically inadmissible, for Prob[f(B,B) < k] <
Prob[f(x',B) < k] for all k. To see this assertion, observe that

1/2 centered at

(B: f(x,B) >k} 1is an interval of width 2(10-k)
B = x. By the symmetry and unimodality of the Normal distribution,
the interval centered at B = P must include the greatest probability
for any k, and hence Prob[f(B,B) > k] > Prob((x',B) > k] when

x' # B, which is equivalent to the assertion that x' # B is

stochastically inadmissible. Since x = 8 {is stochastically admissible,

we see that onlx X = E is stochastical.y admissible, whereas all x

are admissible.

The Maximum @-Fractile and the Aspiration Criteria

In terms of Figure 4, we would like to choose a decision which

=
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achieves the lower envelope of c.d.f.'s everywhere. 1In general this
is impossible, but we can attempt to achieve it at a single point and
hope that this one point wili "pin down" a c.d.f. so that it is close
to the lower envelope. The point may be specified in terms of its
ordinate or abcissa value, whichever seems most natural in a given
problem context. The criteria implied by this idea are, respectively

and lobsely:

Criterion F: Choose an x which corresponds to a

c.d.f. which approaches the lower envelope of c.d.f.'s

at an ordinate value of a{0 < a < 1).

Criterion A: Choose an x which corresponds to a

c.d.f. which approaches the lower envelope at an abcissa

value of M(-» < M < =),

It i3 evident that we have two entire families of criteria here, indexed
by a and M respectively, Criterion F with a = 0.1 would lead

to the choice of X in Figure 4, and Criterion A with M = 20 would

2

5 .
lead to the choice of fh'

Criterior F is equivalent to maximizing the a-fractile§/of the

distribution of f(x,B) wunder u. That is, it maximizes the payoff

74

level below which there is at most an Q probability of falling.

§/ We define the a-fractile of a (possibly mixed) cumulative distri-
bution function F(y) = Prob{Y <y] as

sup(k: F(k) <aj .

L See Kataoka (1963) for a linear programming model of this type.
It is one of the few published references to this criterion.

no
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It corresponds, for fixed O <a <1, to:
Maximize Kk
k,x

(4.5) subject, to x ¢ X
Prob{ f(x,B) < k] <a .

When Q 1is small, say less than 0.1, this criterion should appeal

to conservative decision-makers because it tends to control the lower
tail of the distribution of payoffs. When a = 1/2, (L4.5) maximizes

the median of the distribution of payoffs, of course. We sometimes

use the mnemonic notation F(a) for this criterion.

Criterion A is equivalent to maximizing the probability of exceeding

a prescribed "aspiration" level M of payoff (see Charnes and Cooper,
1963, for an application to linear programming). It corresponds to:

(4.6) : Minimize Prob| £(x,B) < M] .
XxeX

We sometimes use the notation A(M) for this criterion.

Remark: It is to be noted that all cumulative distribution functions

in this subsection are written as Prob[f(x,B) < k] rather
than as Prob[f(x,B) < k] (regard x as being fixed).

This convention is followed in order to avoid some minor
difficulties which would be encountered by these two criteria
if the opposite convention were adopted and the c.d.f.'s

were discontinuous.




- ollae

We introduced these two criteria together becaus: of their intimate
mathematical relationship, as well as their common graphical motivation,
When the lower envelope is attained by some x at every point, and is
continuous and strictly increasing, it is geomctrically clear that
the F and A criteria are complementary in the sense that for every «
there is an M which leads to the same set of decisions, and conversely.
Without such assumptions, however, the complementarity is weakened,

as we shall see in the following two easy propositions.

Proposition 3:

7 . . .» 0O . o .
(i)  Assume that critericu i(u , is satisfled by at ieast one

decision. Then the set of decisions which satisfy criterion
F(ao) contains the set of decisions which satisfy criterion

A(M®), where M° is the maximum o°-fractile.

(1i) Assume that criterion A(M°) is satisfied by at least one
decision. Then the set of decisions which satisfy criterion
A(M°) contains the set of decisions which satisfy criterion

F(ao), where a° 5 Min Prob| f(x,B) < M°].
x ¢ X

Proof: (i), Let x* satisfy F(ao), and let M Dbe the maximum

a-fractile. If x° satisfies A(M°), then Prob[f(ﬁo,g) < M%) <

Prob[ £(x*,B) < M°] < a®, and so x° must also satisfy F(a°).

0 &

(i1), Let x* satisfy A(M°), and let « Min

x eX
Probl £(x,8) < M°] = Prob[f(x*,8) < M°]. 1Ir x° satisries F(a°),

then there exists k° > M’ such that Prob[f(x°,8) < k°] <a° since
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0
k° > 11°, we have Prob[f(fo,g) < M) < PTOb[f(fo:é) < k°] ca,

. o
from which it follows that x° must satisfy A(M°).

Proposition 4:

(1) 1Irf x° sacisfies criterion F(a°) uniquely, then it

satisfies criterion A(M°) uniquely, where M° is the

, o .
maximum & -fractile,

(1) 1r x° satisfies criterion A(M°) uniquely, then it

R . . o .
satisfies criterion F(a ) uniquely, where

a® = Prob[r(x°,p) < M°].

Proof: (i), Suppose.that x° does not satisfy A(M°) uniquely.

o)

Then there exists x' € X, x A X, such that Prob[f(z',g) < Mo] <

Prob[f(fo,g) < MO], which contradicts the fact that §° satisfies

F(a°) uniquely.

(ii), Suppose that 50 does not satisfy F(a®) uniquely.
Then there exist ko‘z M° and x'€X, x'# 50, such that
Prob[ f(x',B) < k] < a® = Prob[f(ﬁo,g) < M°]. since ko‘z Mo, we
have Prob[ £(x',p) < M’] < Prob[f(x',B) < k°], and so
Prob[ £(x',p) < M°] < Prob[£(x°,p) < M°]. This contradicts the fact

that 50 satisfies A(MO) uniquely.

It is possible for criteria F(a) and A(M) to lead to stochas-
tically inadmissible decisions. The next proposition is of interest

in this regard.
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Proposition 5:

(1) 1Irf x° satisties criterion F(a®) uniquely, then 50

also satisfies the stochastic admicsibility criterion.

(11) 1f x° satisfies criterion A(M°)  uniquely, then 50

also satisfies the stochastic admissibility criterion.

Proof: (i), In view of part (i) of Proposition 4, to prove {i)

it is sufficient to prove (ii).

(ii), Let 50 satisfy A(M®) uniquely, so that
(o) 0] \ O 0
Prob( f(x ,B) <M ] < Prob[f(r 8V < M'] for all x ¢ X, x # x .
Suppose that ﬁo were stochastically inadmissible. Then there would
exist x' € X, x' # 50, such that Prob[f(x',B) < k] <
Prob[f(fo,g) < k] for all k. Letting k = Mo, one would obtain

a contradiction.

Now we turn to the relationship between the maxmin payoff criterion
and the maximum -fractile criterion with a = 0. It is not at all
surprising that under mild assumptions these criteria are in fact

equivalent, i.e., the same decisions satisfy both.

Proposition 6:

10/

Assume that f(f’é) is upper semicontinuous—’ on B for each
x € X, and that u is positive on and vanishes outside of B.
Then the maxmin payoff criterion is equivalent to the maximum

O-fractile criterion.

}9/ Let x be fixed in X. Then f(f’g) is upper semicontinuous

at Qo € B if for each € >0 48 > O (depending on Eo and €) such

27
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Proof: We chal! rewrite (4.0) and (#.5) in such a way as to

emphacive their cimilarity, and then show that they are in fact

identical,
11/
The maxmin payoff criterion can be written—

Maximize [sSup(k: f(x,B) >k, V¥V B e BJ],
xeX

and the maximum O-fractile criterion can be written

Maximize [Sup(k: Prob[f(x,B) > k] =1}].
xeX

Define Sl()_() and 82(5) to be the sets appearing in the first and
second problems, respectively, for fixed X. Clearly sl(i)csa(z),
v X € X, for p vanishes outside of B. The proof will be complete
when we show that 82(5) ;Sl(f_), VY XeX

We consider a fixed x, and drop the x arguments from

S and §S,. We may assume that S_. 1is not empty, for if it is

1 2 2
empty then Sl is also empty, and the proof is complete. Take
k' € S2. Suppose that k' ¢ Sl' Then there exists PB' € B such

that f(x,p') < k'. But by the upper semicontinuity of £(x,p) there

exists a neighborhood N' of PB' such that f‘(lc_,g) < k' for all

that f(x.p) < £(x,8) + e whenever B €N.(B”). If f is continuous,
then f 1is upper semicontinuous. Also, recall that if B is a finite

point set in Em, then f(ﬁ,g) is automatically continuous on B.

11 . C s .
—/ This problem follows from the definition of 'inf' as the greatest
lower bound.
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B e N'(N\B. By the positivity of u on B, this contradicts the

fact that k' ¢ 82.

The F and A criteria have the interesting property that one may
perform a continuous monotonic transformation on f(f,g) without
altering the decisions which satisfy these criteria. This certainly

is not true of the next criterion we shall discuss, the expected

value criterion. We emphasize this point in

Proposition 7:

Let g(t) bé any strictly increasing and continuous function
defined from Rl into Rl. Then (i) the set of decisions which
satisfy criterion F(a) does not alter if f(ﬁ,g) is replaced

by g(f(x,8)), and (ii) the set of decisions which satisfy criterion
A(M) does not alter if f(x,B) is replaced by g(f(x,8)) and

M is replaced by g(M).

Proof: Observe that fix,8) <k 1if ard only if g(f(x,B)) < g(k),

since g 1is invertible and strictly increasing. Hence (B: f(x,B) <k] =
(B: &(f(x,p)) <glk)}, and so Prob[f(x,B) < k] = Problg(f(x,B)) <
g(k)]. This yields (ii). To see (i), write

Sup(k: Prob[f(x,B) < k] <al

= Sup(k: Prob[g(f(x,8)) < g(k)] < al

Yg(k)):  Proble(f(x,8)) < g(k)] < a)

Suplg”

g l(supla(k): Problg(f(x,B)) < g(k)] < al)

“(suplt: Froble(s(x,B)) < t] < al)

4
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Finally,

Max [Sup{k: Prob[f(x,B) < k] < a}]
Xx ¢ X

- g Y( Max [oupik: Problg(f(x,8)) < k] <all) .
x eX

Maximum Expected Payoff Criterion

The F and A criteria are designed tc achieve the lower envelope

of the family of c.d.f.'s (Prov|f{x,B) < k]} at a single point,

X € X

in an attempt to "pir down" a c.d.f. to lie "close"to the lower
envelope. Another approach would be to use the area above the lower

envelope and below a candidate c.d.f. as a measure of "closeness."

Criterion E: Choose arn x ¢ X which determines the

c.d.f. with the least area below it and above the lower

envelope.

We shall show now that this geometrically motivated criterion

is equivalent to the maximum expected payoff criterion:

(k.7) Maximize E[f(i,g)] .
X € X

Proposition 8:

Criterion E is equivalent to the maximum expected payoff criterion.

Proof: The proof is a simple consequence of the geometric inter-

pretation of the mean of a random variable in terms of the graph of
its cumulative distribution function. In Figure 5, the mean of the

random variable Y 1is area 1 minus area 2 (see Parzen, 1960, p. 211).
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Denote by A(§)+ the arca corresponding to arcu 1 of Figure 5
tor the c.d.f, Prob[f(x,B) < k], and by A(x)™ the arca corres-
ponding to area 2. OSimilarly, denote by AF and A the areas abov:
and below the lower envelop= of all such c.d.f.'s. The the maximum
expected payoff criterion may be written

Maximize [A(§)+ - A(x)7],
x € X
and Criterion E may be written

Minimize [(A(x)™ - A7) + (A" - A(§)+)] .
xeX

Clearly these two problems lead to the same decisions.

Prob[Y < k]

Figure 5

There is an obvious and fortunate relationship between the maximum

expected payoff criterion and the estimate criterion which sometimes
permits one to choose an estimate in a simple way so that the estimate
criterion is satisfied by the same set of decisions as the expected

payoff criterion.
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Proposition 9:

Acsume that f(x,B) cau be written as

£(x,8) = F (x) + F,(B) + ¥ H,(x)B, -
1

A
Then the estimate criterion with B = E[B] is satisfied by the

same set of decisions as the maximum expected payoff criterion.

Proof: The maximum expected payoff criterion gives

Maximize E[Fl(g) + F2(§) + v Hi(i)ﬁi:] , or
xeX Al

Maximize [Fl(f) + E[F2(E)] + ? Hi(f) E[Bi]-:l .

56)(

A
The estimate criterion with B = E[B] gives

Maximize [Fl(x) ¢ Fy(E[B]) + T H,(x) E[Bi]] :

x e X - i
Since the F2 terms of each problem do not contain x, they may

be deleted, and hence the two criteria lead to identical sets of

decisions.

When the above proposition applies, we cey that the estimate

= E[B] 1is a certainty equivalent with respect to the maximum

o>

expected payoff criterion., Other results in the same vein are given
by Reiter (1957), Simon (1956), and Theil (1964).

It is easy to see from Proposition 8 that any decision which
satisfies the maximum expected payoff criterion must be stochastically

admissible.



It is also wor*h noting that the expected vaiue criterion leads
to the same decisions when applied to payotff us when applied to regret.

In general this is not true for criteria A(M) and F(a).

3.3 An Example

We present a simple inventory model as an illustration of the
ideas of this section and as a vehicle for further discussion. Consider
a firm stocking and selling a single commodity for a single period of
time. We use the notation
X = number of units to be ordered in advance of the
demand
B = unknown demand level during the period
¢ = cost per unit
r = revenue per unit (r > c)

v = salvage value per unit left at end of period (v < c)

.—ﬁ
—
<

-

w

~
|

total profit
X = [0,°)
B = [O,BMAX], where BMAX is chosen sufficiently large

to account for the largest likely demand
The payoff and regret are given by

(r-c)B - (x-B)(c-v) if B <x

f(x)B) =
(r-c)x if B >x
(c-v) (x-B) if B < x
T(X:B) = -
(r-c) (B-x) if B>x.
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First we examine the criteria not involving probabilities over
the set of possible demand levels. All choices for x € X are readily
seen to be admissible., The maxmin payoff criterion leads to the decision
to order zero units, since Min f(x,B) = -(c-v)x. When this criterion
is applied to regret, howeves,eif (minmax regret) leads to the decision
to order [(r-c)/(r-v)]BMAx. This is the same decision that the
Principle of Tnsufficient Reason would give if we interpret it as
putting a uniform distribution over [O,BMAx]. The estimate criterion
leads to a trivial maximization problem once an estimate 3 is chosen,
and indicates that we should order exactly x = @L

Next we examine the criteria involving probabilities over the set
of possible demand levels. 1In order to plot the cumulative distri-
butions of payoff for various candidate x's, we need to know the

set of PB's for which the payoff is less than k.

(

) if k < -(c-v)x
(B: B >0, f(x,) <kl = [o, W) it -(c-v)x < k < (r-o)x

[0,=) if k > (r-c)x .

\

Using the fact that x 1is non-negative, we have for k‘z 0
1 1f x < =t
(r-c)

Prob[ £(x,B) < k] = ﬁ
o . K
‘ 1 -f du if x > ~—




For k <0,

( -k

0 if X<W

1.f dn if x>
\ k+(c-v)x

r-v

Prob[ £(x,B) < k] =4

The lower envelope may be obtained by solving, for all real k,

the problem

Minimize Prob[f(x,B) < k] .
x >0

This problem has a very simple solution for this example. For k <O,

thie minimum i1s zero and is achieved for 0 < x < lkl/(c-v). For k 20,
o0

the minimum is 1 :I’ du and is achieved for x = k/(r-c).
k/(r-c)

Assume for computational simplicity that the demand is exponen-
tially distributed with mean 10, that (c-v) = 1/2, and that
(r-c) = 3/2. Then for k > 0, the lower envelope has height
(1 - exp(-.0666 k]], and is achieved at x = 2k/3.£§/ Figure 6
illustrates the lower envelope and a few sample c.d.f.'s. Observe
that each c.d.f. jumps to the value 1 as soon as it attains the lower
envelope, and that every x >0 is stochastically admissible.

We are now in a position to read off the "optimal" decisions
corresponding to criteria A(M) and F(a) for any choice of M
or a. A(M°) leads to the unique choice of x = MO/(r-c), and

F(a®) leads to the unique choice x = -10 In(1-a ). In this

}2/ Not- that the lower envelope is the c.d.f. of an exponential
distribution with mean 15.
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particular cxample, these criteria lo not fuifiil their promise of
"pinning down" a c.d.f. to lic close to Lhe lower cnvelope, because
each c.d.f. is discontinuous at tunc point at which it achicves the
lower envelope.

The maximum expected payoff criterion may be applied by setting
the derivative ot E[f(x,B)] equal to zero and solving for x.
This computation leads to the well-known (Dvoretzsky, Kiefer, and
Wolfewitz, 1952) result that one should choose the value of x

corresponding to the (r-c)/(r-v)-th fractile of u. That is,

X %

x* should satisfy J[ du = (r-c)/(r-v). For the data assumed above,
o

x* = 13.8, It is interesting to observe that if u were uniform

on ], then the minmax regret criterion would lead to exactly

(0, By
the same action as would the maximum expected payoff criterion.

Next we carry out a parallel analysis in terms of regret rather
than payoff , It will be seen that A(M) and F(a) are more
appealing when applied to the regret distributions. An argument will
be presented for choosing a value of x other than that which mini-
mizes expected regret (which, of course, is cquivalent to maximizing

the expected payoff, the now ciassical solution to this problem).

We have, for k 2> O, /e

(B: £>0, r(x,8) <kl - (¢

X - B ,y X +'—5-] I e

Cav r-c c-Vv

kb
Since we are dealins in terme of regr ', rather than payoff, we seek
the upper envelope r«'her th *he ower envelope. It is obtained by
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rarimicingg, for i or >0, teonlrls,l) < :

rec
Maximlize dp
> K
R BN Max{O, X - ——-&
c-V

Since the exponential distribution is monotone decreasing, the maximum
is easily seen to be achieved at x = k/(c-v). The height of the
upper envelope is thereforc equal to Prob|p < k/(c-v) + k/(r-c)].
For the data given previously, this quantity is computed to be
(1-exp(-0.2666 k)], and the upper envelope is achieved for x = 2k.
Figure 7 is the counterpart of Figure 6. Note that the c.d.f.'s
are continuous, so that A(M) and F(a) are more effective in their
endeavor to "pin up" a c.d.f. to lie near the upper envelope.
For a given value of x, it is a straightforward matter to calcu-
late the expected regret and the a-fractile. This has been done
for a = .95 and some representative values of x 1in Figure 8. The
striking feature of this graph is that large relative changes in .95-
{ractile are available with only small relative changes in expected
regret, with the result that it becomes attractive to deviate from
the ordinary minimum expected regret solulion to the problem. For
example, consider x = 13.8 (which yields the minimum expected regret)
in comparison with x = 20. The former has an expected regret of
0.9 and a .95-fractile of 24.1, whereas the latter has an expected
regret of 7.7 and a .95-fractile of 14.8. That is, by choosing x = 20
instead of 13.8, one may achieve a 38.5% decrease in .95-fractile at
the expense of only 11.6% increase in expected regret; for x = 18
instead of 13.8, the percentagec become 26.1% and 5.9%.
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This example shows a special instance of what is likely to be
a quite general situation: in the neighborhood of the decision indicated
by the maximum expected payoff criterion, it is possible to substan-
tially improve the a-fractile or aspiration levels of payoff or regret
without lowering the expected payoff very much. Such possibilities
ought to be investigated and exploited when {ound to be relevant to

the decision-maker's objectives.

3.4 Vector Maximum Reformulations

The "ideal" decision criterion is analagous to the much-sought
philosophers’ stone of medieval times, and seems about as likely
to exist. We suggest that one might profitably consider, in a given
application, two or even three plausible criteria (not necessarily
the ones discussed herein) and retormulate (4) as a vector maximum
problem. The solution of this vector maximum probiem would reveal
clearly the tradeoffs involved between the criteria, and a decision
may be chosen in an ad hoc manner from the efficient candidates. For
example, if a situation such as Figure 9 occurs, one would probably
choose an efficient sclution nearer to point B than to point A, for
a large gain in criterion 2 can be achieved at the expense of a rela-

tively small loss in criterion 1.

+Criterion 2 (to be maximized)

S Criterion 1

Figure 9 (to be maximized)

b1




One combination of criteria which seemsparticularly plausible
when a probability distribution over B 1is available is the a-fractile
criterion with the expected value criterion. With a small, the
first criterion tends to control the lower tail of the distribution
of payoffs, while the second tends to control the mean. Such a com-
bination might be used to program a mutual investment fund, for example,
for the possibility of ruin or large losses seems to loom as a separate
dimension of utility from the average growth rate. Markowitz (1956)
had precisely this viewpoint in mind for his well-lkuown portfolio
problem, except that he used variance in place of the a-fractile.
Hodges and Lehmann (1952) proposed essentially this combination
of criteria, except that they took a equal to zero. Letting «
rise above zero seems to avoid same of the excessive conservatism in
their formulation, while keeping the aim of protection against large

losses.
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CHAPTER 11
Keducing a Vector Maximum Problem to a

Parametric Programming Problem
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